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ABSTRACT: The aim of this paper is to generalize common fixed point theorem proved by Bijendra singh by
introducing the two types of weak reciprocally continuous mappings.  The concepts of compatibility and
complete metric space are replaced by two different types of weak reciprocally continuous mappings along
with some weaker conditions.
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I. INTRODUCTION

G. Jungck [1] introduced the concept of compatible maps which is weaker than weakly commuting maps. G.Jungck
[1] generalized the concept of compatible mappings by introducing the notion of compatible mappings of type (A).
Pathak extended the concept of compatibility to two analogus definitions namely A- compatible and S-compatible.
After wards Jungck and Rhoades [4] defined weaker class of maps known as weakly compatible maps.
Pant [2] introduced a new notion of continuity namely reciprocal continuity for a pair of self maps and proved some
common fixed point theorems. Further Pant [2] et al introduced the concept of weak reciprocally continuity.

1.1. 1 Definitions and Preliminaries Compatible mappings: Two self maps A and S of a metric space (X,d)  are

said to be compatible mappings [1] if
∞→n

lim d(ASxn, SAxn) = 0, whenever  <xn> is a sequence in X  such that

∞→n
lim Axn =

∞→n
lim Sxn= t  for some  t ∈ X.

1.1. 2 Weakly compatible mappings: Two self maps A and S of a metric space (X, d)  are said to be  weakly
compatible [4 ] if they commute at their coincidence point. i.e. if  Au=Su for some u ∈ X then ASu = SAu.

1.1.3 Reciprocally continuous mappings:Two self maps A and S of a metric space (X, d)  are said to be

reciprocally continuous [2] if
∞→n

lim ASxn=At and
∞→n

lim SAxn = St when ever <xn>  is a sequence such that
∞→n

lim

Axn=
∞→n

lim Sxn= t  for some t∈X.

1.1.4 Weak reciprocally continuous mappings: Two self maps A and S of a metric space (X, d)  are said to be

Weak reciprocally continuous [11] iff
∞→n

lim ASxn = At or
∞→n

lim SAxn = St when ever <xn>  is a sequence such that

∞→n
lim Axn =

∞→n
limSxn = t for some t ∈ X.

Now we define the weak reciprocally continuous mappings by introducing into two analogous definitions.

1.1.5 A-Weak reciprocally continuous mapping: Two self maps A and S of a metric space (X, d)  are said to be

A-Weak reciprocally continuous iff
∞→n

lim ASxn = At  whenever  <xn>  is a sequence such that
∞→n

lim Axn=
∞→n

lim Sxn = t

for some t ∈ X.
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1.1.6 S-Weak reciprocally continuous mapping: Two self maps A and S of a metric space (X, d)  are said to be

A-Weak reciprocally continuous iff
∞→n

lim SAxn = St  when ever <xn>  is a sequence such that
∞→n

lim Axn =
∞→n

lim Sxn = t

for some t ∈ X.
1.1.7    A-Compatible mappings
Two self maps S and T of a metric space (X, d)  are A-compatible iff

∞→n
lim d(ASxn, SSxn) = 0, when ever <xn>  is a

sequence such that
∞→n

lim Sxn =
∞→n

limAxn = t  for some t ∈ X.

1.1.8 S-Compatible mappings
Two self maps S and T of a metric space (X, d)  are S-compatible iff

∞→n
lim d(AAxn, SAxn) = 0, when ever <xn>  is a

sequence such that
∞→n

lim Sxn=
∞→n

lim Axn = t  for some t ∈ X.

It is clear that every compatible pair is weakly compatible but its converse need not be true.

Singh and Chauhan [6 ] proved the following theorem.

2. Theorem (A): Let A, B, S and T be self mappings from a complete metric space (X, d) into itself satisfying the
following conditions

A(X) ⊆ T(X)  and B(X) ⊆ S(X) ...(2.1.1)
One of A, B, S or T is continuous ...(2.1.2)

[ ] [ ]
[ ]

2

1

2

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

d Ax By k d Ax Sx d By Ty d By Sx d Ax Ty

k d Ax Sx d Ax Ty d By Ty d By Sx

≤ +

+ +
… (2.1.3)

where 1 2 1 20 2 1, , 0k k k k≤ + < ≥

The pairs (A, S) and (B, T) are compatible on X …(2.1.4)
Further if X is a complete metric space …(2.1.5)

Then A, B, S and T have a unique common fixed point in X.

Now we use definition of associated sequence [10] that plays a vital role in proving our theorem

2.1 Associated Sequence: Suppose AB,S and T are self maps of a metric space (X, d) satisfying the condition
(2.1.1) Then for an arbitrary  x0∈X such that Ax0 = Tx1 and for this point x1, there exist a point x2 in X such that
Bx1= Sx2 and so on.  Proceeding in the similar manner, we can define a sequence <yn> in X such that  y2n = Ax2n=
Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2 for n ≥ 0. We shall call this sequence as an “Associated sequence of x0 “relative
to the four self maps A, B, S and T.
Now we prove a lemma which plays an important role in our main Theorem.

2.2 Lemma: Let A, B, S and T be self mappings from a complete metric space (X, d) into itself satisfying the
conditions (2.1.1) and (2.1.3) Then the associated sequence {yn} relative to four self maps is a Cauchy sequence in
X.
Proof: From the conditions (2.1.1), (2.1.3) and from the definition of associated sequence we have

[ ] [ ]
[ ]
[ ]

2 2

2 1 2 2 1 2

1 2 1 2 1 2 2 2 2 1 2 1 2

2 2 1 2 1 2 1 2 2 2 2 2 1

( , ) ( , )

( , ) ( , ) ( , ) ( ,

( , ) ( , ) ( , ) ( , )

n n n n

n n n n n n n n

n n n n n n n n

d y y d Ax Bx

k d Ax Sx d Bx Tx d Bx Sx d Ax Tx

k d Ax Sx d Ax Tx d Bx Tx d Bx Sx

+ +

+ + + +

+ + + +

=

≤ +

+ +

[ ]
[ ]

1 2 1 2 2 2 1

2 2 1 2 2 1 2 1

( , ) ( , ) 0

( , ) ( , ) 0

n n n n

n n n n

k d y y d y y

k d y y d y y

+ −

+ + −

= +

+ +
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This implies

[ ]2 1 2 1 2 2 1 2 2 1 2 2 2 1

2 1 2 2 2 1

1 2

2

1 1 2 1

0 1

( , ) ( , ) ( , ) ( , )

( , ) ( , )

1
1

int 0,

( , ) ( , ) ( , ) ............ ( , )

( , )

n n n n n n n n

n n n n

n n p n n n n n p n p

n n

d y y k d y y k d y y d y y

d y y h d y y

k k
where h

k

For every eger p we get

d y y d y y d y y d y y

h d y y h

+ − + −

+ −

+ + + + + − +

+

≤ + +
≤

+= <
−

>
≤ + + +

≤ +

( )
( )

1 1
0 1 0 1

1 1
0 1

2 1
0 1

( , ) ............. ( , )

............. ( , )

1 ............. ( , )

n p

n n n p

n p

d y y h d y y

h h h d y y

h h h h d y y

+ −

+ + −

−

+ +

≤ + + +

≤ + + + +

Since h < 1, hn → 0  as n→ ∞,  so that d(yn, yn+p)→ 0.  This shows that the sequence {yn} is a Cauchy sequence in X
and since X is a complete metric space, it converges to a limit, say z ∈ X.
The converse of the Lemma  is not true, that is A, B, S and T are self maps of a metric space (X, d) satisfying (2.1.1)
and (2.1.3), even if for any x0 ∈ X the associated sequence converges,  the metric space (X, d) need not be complete.
The following example establishes this.

2.3. Example: Let   X = (0,1)   with d(x,y) = x y−
1 1 1 1

0 0
6 4 8 4
1 1 1 1 1 1

4 4 2 2 4 2

if x if x
Ax Bx Sx Tx

if x x if x

 < < < <  = = = = 
 ≤ < − ≤ <  

Then A(X) = B(X)=
1 1

,
6 4

 
 
 

while S(X) = T(X) =
1 1

,0
4 8

  
    

 so that the conditions A(X) ⊆ T(X) and

B(X) ⊆ S(X)  are  satisfied. Clearly (X, d) is not a complete metric space. It is easy to prove that the associated

sequence Ax0,Bx1Ax2,Bx3,..,Ax2n,Bx2n+1…., converges to the point
1

4
if .

1 1

4 2
x≤ < , but X is not a complete

metric space.
Now we generalize the above Theorem (A) in the following form.

3. MAIN THEOREM

3.1 Theorem (B): Let A, B, S and T are self maps of a metric space (X, d) satisfying the conditions
(i). A(X) ⊆ T(X) and B(X) ⊆ S(X)

(ii)
[ ] [ ]

[ ]

2

1

2

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

d Ax By k d Ax Sx d By Ty d By Sx d Ax Ty

k d Ax Sx d Ax Ty d By Ty d By Sx

≤ +

+ +
for all x,y in x where 1 2 1 20 2 1, , 0k k k k≤ + < ≥
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(iii) The pair (A, S) is A-weak reciprocally continuous and A-compatible
or

The pair (A, S) is S- weak reciprocally continuous and   S compatible and
(iv) The pair (B, T)  is weakly compatible.
(v) For any x0 ∈ X The associated sequence relative to four self maps A ,B, S and T such that the

sequence Ax0, Bx1 Ax2, Bx3,.., Ax2n, Bx2n +1,….. converges to z ∈ X. as n→ ∞.
Then A, B, S and T have a unique common fixed point z in X.

Proof: Using the condition (v),
We have

2 2 1 2 1 2, , , ......(3.1.1)n n n nAx z Tx z Bx z Sx z as n+ +→ → → → → ∞
Case 1:

Since S is weak reciprocally continuous then 2lim n
n

SAx Sz
→∞

→

2 2

2 2

sin ( , ) lim ( , ) 0

lim lim .......(3.1.2)

n n
n

n n
n n

ce the pair A S is S compatible then d SAx AAx giving that

SAx AAx Sz
→∞

→∞ →∞

=

= =

Put x = Ax2n y = x2n+1 in condition (ii) we have

[ ] [ ]
[ ]

2

2 2 1 1 2 2 2 1 2 1 2 1 2 2 2 1

2 2 2 2 2 1 2 1 2 1 2 1 2

( , ) ( , ) ( , ) ( , ) ( ,

( , ) ( , ) ( , ) ( ,

sin (3.1.1) , (3.1.2)

n n n n n n n n n n

n n n n n n n n

d AAx Bx k d AAx SAx d Bx Tx d Bx SAx d AAx Tx

k d AAx SAx d AAx Tx d Bx Tx d Bx SAx

letting n on both sides and u g theconditions t

+ + + + +

+ + + +

≤ +

+ +
→ ∞

[ ] [ ]
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[ ] [ ]
[ ]

2

1

2

2 2

1

2
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( , ) ( , )

( , ) (1 ) 0 sin 0 2 1, , 0

( , ) 0

hen we get

d Sz z k d Sz Sz d z z d z Sz d Sz z

k d Sz Sz d Sz z d z z d z Sz

d Sz z k d Sz z

d Sz z k ce k k k k we have

d Sz z givng that Sz z

≤ +

+ +

≤

− ≤ ≤ + < ≥
= =

Put x = z, y = x2n+1 in condition (ii) we have

[ ] [ ]
[ ]

[ ]

2

2 1 1 2 1 2 1 2 1 2 1

2 2 1 2 1 2 1 2 1

2

1

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

sin , (3.1.1) ,

( , ) ( , )

n n n n n

n n n n

d Az Bx k d Az Sz d Bx Tx d Bx Sz d Az Tx

k d Az Sz d Az Tx d Bx Tx d Bx Sz

letting n on both sides and u g theconditions Sz z then we get

d Az z k d Az z d

+ + + + +

+ + + +

≤ +

+ +
→ ∞ =

≤ [ ]
[ ]2

( , ) ( , ) ( , )
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z z d z z d Az z

k d Az z d Az z d z z d z z

+

+ +

[ ] [ ]
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2 2

2

2

2 1 2 1 2

( , ) ( , )

(1 ) ( , ) 0 sin 0 2 1, , 0

( , ) 0

d Az z k d Az z

k d Az z ce k k k k we have

d Az z givng that Az z

≤

− ≤ ≤ + < ≥
= =
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Since A(X) ⊆ T(X) implies there exists u∈X such that z = Az = Tu.

To prove Bu = z, put x = z , y = u in condition (ii) we have

[ ] [ ]
[ ]

[ ] [ ]
[ ]

[ ] [ ]

2

1

2

2

1

2

2 2

2

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

sin ,

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , )

(1

d Az Bu k d Az Sz d Bu Tu d Bu Sz d Az Tu

k d Az Sz d Az Tu d Bu Tu d Bu Sz

U g Az Sz z and z Az Tu we have

d z Bu k d z z d Bu z d Bu z d z z

k d z z d z z d Bu z d Bu z

d Bu z k d Bu z

≤ +

+ +
= = = =

≤ +

+ +

≤

− [ ]2

2 1 2 1 2) ( , ) 0 Since0 2 1, , 0

( , ) 0

k d Bu z k k where k k we have

d Bu z giving that Bu z

≤ ≤ + < ≥
= =

Hence we have Az = Sz = Bu = z.
Since (B, T) is weakly compatible Btu = TBu this  implies Bz = Tz

Now we prove Bz = z
Put x = x2n, y = z  in condition (ii) we have

[ ] [ ]
[ ]

[ ]

2

2 1 2 2 2 2

2 2 2 2 2

2

1

( , ) ( , ) ( , ) ( , ) ( , )
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n n n n

d Ax Bz k d Ax Sx d Bz Tz d Bz Sx d Ax Tz

k d Ax Sx d Ax Tz d Bz Tz d Bz Sx

letting n on both sides and u g theconditionsTz Bz then we get

d z Bz k d z z d Bz z d Bz z d z z

≤ +

+ +
→ ∞ =

≤ +[ ]
[ ]2

)

( , ) ( , ) ( , ) ( , )k d z z d z z d Bz z d Bz z+ +
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2 2

2

2
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(1 ) ( , ) 0 Since0 2 1, , 0

d Bz z k d Bz z

k d Bz z k k where k k we have

≤

− ≤ ≤ + < ≥
( , ) 0 .d Bz z giving that Bz z

Hence Bz Tz z

= =
= =

Case2:

Since A is weakly reciprocally continuous then 2lim n
n

ASx Az
→∞

→

2 2

2 2

sin ( , ) lim ( , ) 0

lim lim ...(3.1.3)

n n
n

n n
n n

ce the pair A S is A compatible then d ASx SSx giving that

SAx AAx Az
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=
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Put x = Sx2n y = x2n+1 in condition (ii) we have

[ ] [ ]
[ ]

2
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≤
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Since A(X) ⊆ T(X) implies there exists v∈X such that  z = Az = Tv
Put x = x2n, y = u
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d Bv z giving that Bv z

+ +

≤
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= =

Since (B, T) is weakly compatible implies BTv = TBv ⇒ Bz = Tz

Now we prove Bz = z
Put x = x2n, y = z in condition (ii) we have
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letting n on both sides and u g theconditionsTz Bz then we get
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k d Bz z k k where k k we have

d Bz z giving that Bz z

Hence Bz Tz z
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≤
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= =

B(X) ⊆ S(X) implies there exists w ∈ X such that Bz = z = Sw.
since the pair (A,S) is A compatible then

∞→n
lim d(ASx2n,SSx2n) = 0 implies d(ASw, SSw) = 0 implies ASw = SSw

implies Az = Sz = z.

Since Az = Bz = Sz = Tz = z, we get z in a common fixed point of A,B,S and T. The uniqueness of the fixed point
can be easily proved.

3.2. Remark: From the example given above, clearly the pair (A, S) is S weak reciprocally continuous and S

compatible and (B, T) is weakly compatible as they commute at coincident points 1

4
. But the pairs (A, S)  and

(B,T) are  not compatible and not reciprocally continuous.

For this, take a sequence xn=
1 1

4 n
 +  

for n≥1, then
∞→n

lim Axn=
∞→n

lim Sxn=
1

4
and

∞→n
lim ASxn=

1

6

also
∞→n

lim SAxn=
1

4
. So that

∞→n
lim d(ASxn, SAxn) ≠ 0. Also note that none of the mappings are continuous and the

rational inequality holds for the values of 1 2 1 20 2 1, , 0k k where k k≤ + < ≥ . Clearly
1

4
is the unique

common fixed point of A, B, S and T.

3.3 Remark: Theorem (B) is a generalization of Theorem (A) by virtue of the weaker conditions such as S- weak
reciprocally continuous and   S compatible in the pair (A,S) and (B,T)  is weakly compatible, which are weaker
conditions than compatibility of the pairs (A, S) and (B ,T) assumed in theorem (A); The continuity of any one of
the mappings is  being dropped and the convergence of associated sequence relative to four self maps A, B, S and
T in place of the complete metric space assumed in theorem(A).
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